Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 44
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Heliyon ; 10(2): e24368, 2024 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-38298614

RESUMO

Radiation therapy is a first-line treatment for head and neck cancer; however, it typically leads to hyposalivation stemming from fibrosis of the salivary gland. Current strategies to restore glandular function are dependent on the presence of residual functional salivary gland tissue, a condition commonly not met in patients with extensive fibrotic coverage of the salivary gland resulting from radiation therapy. Fibrosis is defined by the pathological accumulation of connective tissue (i.e., extracellular matrix) and excessive deposition of crosslinked (fibrillar) collagen that can impact a range of tissues and given that collagen crosslinking is necessary for fibrosis formation, inhibiting this process is a reasonable focus for developing anti-fibrotic therapies. Collagen crosslinking is catalyzed by the lysyl oxidase family of secreted copper-dependent metalloenzymes, and since that copper is an essential cofactor in all lysyl oxidase family members, we tested whether localized delivery of a copper chelator into the submandibular gland of irradiated mice could suppress collagen deposition and preserve the structure and function of this organ. Our results demonstrate that transdermal injection of tetrathiomolybdate into salivary glands significantly reduced the early deposition of fibrillar collagen in irradiated mice and preserved the integrity and function of submandibular gland epithelial tissue. Together, these studies identify copper metabolism as a novel therapeutic target to control radiation induced damage to the salivary gland and the current findings further indicate the therapeutic potential of repurposing clinically approved copper chelators as neoadjuvant treatments for radiation therapy.

2.
Acta Biomater ; 172: 147-158, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-37844750

RESUMO

Ionizing radiation, commonly used for head and neck cancer treatment, typically damages the salivary glands, resulting in hyposalivation. The development of treatments to restore this lost function is crucial for improving the quality of life for patients suffering from this condition. To address this clinical need, we have developed an innovative hydrogel by chemically conjugating laminin-1 peptides (A99 and YIGSR) and growth factors, FGF-7 and FGF-10, to fibrin hydrogels. Our results demonstrate that FGF-7/10 and laminin-1 peptides fortified fibrin hydrogel [enhanced laminin-1 peptides fibrin hydrogel (Ep-FH)] promotes salivary gland regeneration and functionality by improving epithelial tissue organization, establishing a healthy network of blood vessels and nerves, while reducing fibrosis in a head and neck irradiated mouse model. These results indicate that fibrin hydrogel-based implantable scaffolds containing pro-regenerative signals promote sustained secretory function of irradiated salivary glands, offering a potential alternative treatment for hyposalivation in head and neck cancer patients undergoing radiation treatment. These unique findings emphasize the potential of fibrin hydrogel-based implantable scaffolds enriched with pro-regenerative signals in sustaining the secretory function of irradiated salivary glands and offer a promising alternative treatment for addressing hyposalivation in head and neck cancer patients undergoing radiation therapy. STATEMENT OF SIGNIFICANCE: Radiation therapies used to treat head and neck cancers often result in damaged salivary gland, leading to severe dryness of the oral cavity. In this study, we engineered FGF-7 and FGF-10 and immobilized them into L1p-FH. The resulting hydrogel, Ep-FH, restored irradiated salivary gland functionality by enhancing epithelial tissue organization, promoting the development of a healthy network of blood vessels and nerves as well as reduction of fibrosis.


Assuntos
Neoplasias de Cabeça e Pescoço , Xerostomia , Camundongos , Animais , Humanos , Hidrogéis/farmacologia , Fibrina/farmacologia , Qualidade de Vida , Glândulas Salivares/fisiologia , Laminina/farmacologia , Peptídeos , Xerostomia/terapia , Fibrose
3.
Artigo em Inglês | MEDLINE | ID: mdl-37622089

RESUMO

Background: Sjögren syndrome (SS) is an autoimmune disease characterized by lymphocytic infiltration and diminished secretory function of the salivary glands. Dexamethasone (DEX) resolves dry mouth and lymphocytic infiltration; however, this treatment is difficult to maintain because of multiple adverse effects (eg, osteoporosis and skin thinning); likewise, aspirin-triggered resolvin D1 (AT-RvD1) increases saliva secretion but cannot eliminate lymphocytic infiltration. Previous studies showed that a combination of low-dose DEX with AT-RvD1 before disease onset prevents SS-like features in a mouse model; however, this is not clinically practical because there are no reliable indicators of SS before disease onset. Therefore, the authors applied the combined treatment at disease onset to show its efficacy and comparative lack of adverse effects, so that it may reasonably be maintained over a patient's lifetime. Methods: NOD/ShiLtJ mice were treated with ethanol (vehicle control), high-dose DEX alone, AT-RvD1 alone, or a combination of low-dose DEX with AT-RvD1 at disease onset for 8 weeks. Then saliva flow rates were measured, and submandibular glands were harvested for histologic analyses. Results: A combined treatment of low-dose DEX with AT-RvD1 significantly decreased mast cell degranulation and lymphocytic infiltration, increased saliva secretion, and restored apical aquaporin-5 expression in submandibular glands of NOD/ShiLtJ mice. Conclusions: Low-dose DEX combined with AT-RvD1 reduces the severity of SS-like manifestation and prevents the development of advanced and potentially irreversible damage, all in a form that can reasonably be administered indefinitely without the need to cease treatment because of secondary effects.

4.
J Histochem Cytochem ; 70(9): 659-667, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35993302

RESUMO

Tuft cells are bottle-shaped, microvilli-projecting chemosensory cells located in the lining of a variety of epithelial tissues and, following their identification approximately 60 years ago, have been linked to immune system function in a variety of epithelia. Until recently, Tuft cells had not been convincingly demonstrated to be present in salivary glands with their detection by transmission electron microscopy only shown in a handful of earlier studies using rat salivary glands, and no follow-up work has been conducted to verify their presence in salivary glands of other species. Here, we demonstrate that Tuft cells are present in the submandibular glands of various species (i.e., mouse, pig and human) using transmission electron microscopy and confocal immunofluorescent analysis for the POU class 2 homeobox 3 (POU2F3), which is considered to be a master regulator of Tuft cell identity.


Assuntos
Glândulas Salivares , Glândula Submandibular , Animais , Epitélio , Humanos , Camundongos , Microvilosidades , Ratos , Suínos
5.
Invest Ophthalmol Vis Sci ; 63(6): 18, 2022 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-35727180

RESUMO

Purpose: To develop a mouse model of human dry eye disease (DED) for investigation of sex differences in autoimmune-associated dry eye pathology. Methods: Ocular surface disease was assessed by quantifying corneal epithelial damage with lissamine green stain in the NOD.H-2h4,IFNγ-/-,CD28-/- (NOD.H-2h4 DKO) mouse model of Sjögren's syndrome (SS). Lacrimal gland function was assessed by tear volume quantification with phenol red thread and lacrimal gland inflammation (i.e., dacryoadenitis) was assessed by quantification of immune cell foci, flow cytometric analysis of immune cell composition, and expression of proinflammatory markers. Results: The NOD.H-2h4 DKO mouse model of SS exhibits greater age-dependent increases in corneal damage than in NOD.H-2h4 parental mice and demonstrates an earlier disease onset in females compared to males. The severity of ocular surface disease correlates with loss of goblet cell density, increased conjunctivitis, and dacryoadenitis that is more pronounced in NOD.H-2h4 DKO than NOD.H-2h4 mice. B cells dominate lacrimal infiltrates in 16-week-old NOD.H-2h4 and NOD.H-2h4 DKO mice, but T helper cells and macrophages are also present. Lacrimal gland expression of proinflammatory genes, including the P2X7 and P2Y2 purinergic receptors, is greater in NOD.H-2h4 DKO than NOD.H-2h4 mice and correlates with dacryoadenitis. Conclusions: Our results demonstrate for the first time that autoimmune dry eye disease occurs in both sexes of NOD.H-2h4 DKO and NOD.H-2h4 mice, with earlier onset in female NOD.H-2h4 DKO mice when compared to males of the same strain. This study demonstrates that both NOD.H-2h4 and NOD.H-2h4 DKO mice are novel models that closely resemble SS-related and sex-dependent DED.


Assuntos
Dacriocistite , Síndromes do Olho Seco , Aparelho Lacrimal , Síndrome de Sjogren , Animais , Dacriocistite/patologia , Modelos Animais de Doenças , Síndromes do Olho Seco/metabolismo , Feminino , Aparelho Lacrimal/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos NOD , Síndrome de Sjogren/genética , Síndrome de Sjogren/metabolismo
6.
Front Immunol ; 13: 1094278, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36713415

RESUMO

Sjögren's syndrome is a chronic inflammatory autoimmune disease characterized by diminished secretory function of the exocrine glands. Although extensive investigation has been done to understand Sjögren's syndrome, the causes of the disease are as yet unknown and treatments remain largely ineffective, with established therapeutic interventions being limited to use of saliva substitutes with modest effectiveness. A primary feature of Sjögren's syndrome is uncontrolled inflammation of exocrine tissues and previous studies have demonstrated that lipid-based specialized pro-resolving mediators reduce inflammation and restores tissue integrity in salivary glands. However, these studies are limited to a single specialized pro-resolving lipid mediator's family member resolvin D1 or RvD1 and its aspirin-triggered epimer, AT-RvD1. Consequently, additional studies are needed to explore the potential benefits of other members of the specialized pro-resolving lipid mediator's family and related molecules (e.g., additional resolvin subtypes as well as lipoxins, maresins and protectins). In support of this goal, the current review aims to briefly describe the range of current experimental methods to investigate the impact of specialized pro-resolving lipid mediators on Sjögren's syndrome, including both strengths and weaknesses of each approach where this information is known. With this article, the possibilities presented by specialized pro-resolving lipid mediators will be introduced to a wider audience in immunology and practical advice is given to researchers who may wish to take up this work.


Assuntos
Síndrome de Sjogren , Humanos , Glândulas Salivares , Inflamação , Aspirina/uso terapêutico , Lipídeos/uso terapêutico
7.
Ann Diagn Pathol ; 56: 151865, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-34847389

RESUMO

Our previous studies demonstrated that resolvin D1 (RvD1) and its aspirin-trigged (AT) form AT-RvD1, are effective in decreasing inflammation while restoring saliva flow rates in a Sjögren's syndrome (SS)-like mouse model before and after disease onset. Resolvins are specialized pro-resolving mediators (SPM) that actively regulate inflammation. However, we only have extensive data within the salivary glands for RvD1 and AT-RvD1, both of which bind to the receptor ALX/FPR2. As such, the presence of other SPM receptors is unknown within salivary glands. Therefore, the goal of this study was to determine the expression of SPM receptors in non-SS and SS patients. For this purpose, six human minor salivary glands from female subjects were analyzed by H&E using the Chisholm and Mason classification to determine the degree of lymphocytic infiltration. Next, confocal immunofluorescence analysis was performed to determine the presence and distribution of different SPM receptors in mucous acini and striated ducts. We observed diffuse presence of lymphocytic infiltration and clinical data were consistent with SS diagnosis in three patients. Moreover, confocal immunofluorescence analysis indicated the presence of the receptors ALX/FPR2, BLT1 and CMKLR1 in the mucous acini and striated ducts of both non-SS and SS patients. GPR32 was absent in SS and non-SS minor salivary glands. In summary, our results showed that various SPM receptors are expressed in non-SS and SS minor salivary glands, all of which may pose as potential targets for promoting pro-epithelial and anti-inflammatory/pro-resolution signaling on SS patients.


Assuntos
Receptores de Quimiocinas/metabolismo , Receptores de Formil Peptídeo/metabolismo , Receptores Acoplados a Proteínas G/metabolismo , Receptores do Leucotrieno B4/metabolismo , Receptores de Lipoxinas/metabolismo , Glândulas Salivares Menores/metabolismo , Síndrome de Sjogren/metabolismo , Adulto , Idoso de 80 Anos ou mais , Feminino , Humanos , Pessoa de Meia-Idade , Adulto Jovem
8.
Front Bioeng Biotechnol ; 9: 729180, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34631679

RESUMO

Previous studies demonstrated that salivary gland morphogenesis and differentiation are enhanced by modification of fibrin hydrogels chemically conjugated to Laminin-1 peptides. Specifically, Laminin-1 peptides (A99: CGGALRGDN-amide and YIGSR: CGGADPGYIGSRGAA-amide) chemically conjugated to fibrin promoted formation of newly organized salivary epithelium both in vitro (e.g., using organoids) and in vivo (e.g., in a wounded mouse model). While these studies were successful, the model's usefulness for inducing regenerative patterns after radiation therapy remains unknown. Therefore, the goal of the current study was to determine whether transdermal injection with the Laminin-1 peptides A99 and YIGSR chemically conjugated to fibrin hydrogels promotes tissue regeneration in irradiated salivary glands. Results indicate that A99 and YIGSR chemically conjugated to fibrin hydrogels promote formation of functional salivary tissue when transdermally injected to irradiated salivary glands. In contrast, when left untreated, irradiated salivary glands display a loss in structure and functionality. Together, these studies indicate that fibrin hydrogel-based implantable scaffolds containing Laminin-1 peptides promote secretory function of irradiated salivary glands.

9.
J Histochem Cytochem ; 69(8): 523-534, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-34339312

RESUMO

Radiation therapy-mediated salivary gland destruction is characterized by increased inflammatory cell infiltration and fibrosis, both of which ultimately lead to salivary gland hypofunction. However, current treatments (e.g., artificial saliva and sialagogues) only promote temporary relief of symptoms. As such, developing alternative measures against radiation damage is critical for restoring salivary gland structure and function. One promising option for managing radiation therapy-mediated damage in salivary glands is by activation of specialized proresolving lipid mediator receptors due to their demonstrated role in resolution of inflammation and fibrosis in many tissues. Nonetheless, little is known about the presence and function of these receptors in healthy and/or irradiated salivary glands. Therefore, the goal of this study was to detect whether these specialized proresolving lipid mediator receptors are expressed in healthy salivary glands and, if so, if they are maintained after radiation therapy-mediated damage. Our results indicate that specialized proresolving lipid mediator receptors are heterogeneously expressed in inflammatory as well as in acinar and ductal cells within human submandibular glands and that their expression persists after radiation therapy. These findings suggest that epithelial cells as well as resident immune cells represent potential targets for modulation of resolution of inflammation and fibrosis in irradiated salivary glands.


Assuntos
Tolerância a Radiação , Receptores de Quimiocinas/genética , Receptores de Formil Peptídeo/genética , Receptores Acoplados a Proteínas G/genética , Receptores do Leucotrieno B4/genética , Receptores de Lipoxinas/genética , Glândula Submandibular/efeitos da radiação , Células Acinares/citologia , Células Acinares/metabolismo , Células Acinares/efeitos da radiação , Adulto , Idoso , Células Endoteliais/citologia , Células Endoteliais/metabolismo , Células Endoteliais/efeitos da radiação , Feminino , Raios gama , Expressão Gênica , Humanos , Leucócitos Mononucleares/citologia , Leucócitos Mononucleares/metabolismo , Leucócitos Mononucleares/efeitos da radiação , Masculino , Pessoa de Meia-Idade , Receptores de Quimiocinas/metabolismo , Receptores de Formil Peptídeo/metabolismo , Receptores Acoplados a Proteínas G/metabolismo , Receptores do Leucotrieno B4/metabolismo , Receptores de Lipoxinas/metabolismo , Glândula Submandibular/citologia , Glândula Submandibular/metabolismo
10.
Clin Transl Sci ; 14(2): 683-691, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33202089

RESUMO

Sjögren's syndrome (SS) is an autoimmune disease with no effective treatment options. Resolvin D1 (RvD1) belongs to a class of lipid-based specialized pro-resolving mediators that showed efficacy in preclinical models of SS. We developed a physiologically-based pharmacokinetic (PBPK) model of RvD1 in mice and optimized the model using plasma and salivary gland pharmacokinetic (PK) studies performed in NOD/ShiLtJ mice with SS-like features. The predictive performance of the PBPK model was also evaluated with two external datasets from the literature reporting RvD1 PKs. The PBPK model adequately captured the observed concentrations of RvD1 administered at different doses and in different species. The PKs of RvD1 in virtual humans were predicted using the verified PBPK model at various doses (0.01-10 mg/kg). The first-in-human predictions of RvD1 will be useful for the clinical trial design and translation of RvD1 as an effective treatment strategy for SS.


Assuntos
Ácidos Docosa-Hexaenoicos/farmacocinética , Modelos Biológicos , Animais , Conjuntos de Dados como Assunto , Ácidos Docosa-Hexaenoicos/administração & dosagem , Relação Dose-Resposta a Droga , Avaliação Pré-Clínica de Medicamentos , Feminino , Humanos , Masculino , Camundongos , Modelos Animais , Glândulas Salivares/metabolismo , Síndrome de Sjogren/tratamento farmacológico , Distribuição Tecidual
11.
Cells ; 9(12)2020 12 09.
Artigo em Inglês | MEDLINE | ID: mdl-33316992

RESUMO

Thermoresponsive cell culture plates release cells as confluent living sheets in response to small changes in temperature, with recovered cell sheets retaining functional extracellular matrix proteins and tight junctions, both of which indicate formation of intact and functional tissue. Our recent studies demonstrated that cell sheets are highly effective in promoting mouse submandibular gland (SMG) cell differentiation and recovering tissue integrity. However, these studies were performed only at early time points and extension of the observation period is needed to investigate duration of the cell sheets. Thus, the goal of this study was to demonstrate that treatment of wounded mouse SMG with cell sheets is capable of increasing salivary epithelial integrity over extended time periods. The results indicate that cell sheets promote tissue organization as early as eight days after transplantation and that these effects endure through Day 20. Furthermore, cell sheet transplantation in wounded SMG induces a significant time-dependent enhancement of cell polarization, differentiation and ion transporter expression. Finally, this treatment restored saliva quantity to pre-wounding levels at both eight and twenty days post-surgery and significantly improved saliva quality at twenty days post-surgery. These data indicate that cell sheets engineered with thermoresponsive cell culture plates are useful for salivary gland regeneration and provide evidence for the long-term stability of cell sheets, thereby offering a potential new therapeutic strategy for treating hyposalivation.


Assuntos
Saliva/fisiologia , Glândula Submandibular/metabolismo , Animais , Anoctamina-1/metabolismo , Aquaporina 5/metabolismo , Diferenciação Celular , Feminino , Camundongos , Camundongos Endogâmicos C57BL , Saliva/metabolismo , ATPase Trocadora de Sódio-Potássio/metabolismo , Glândula Submandibular/citologia , Glândula Submandibular/patologia , Cicatrização , Proteína da Zônula de Oclusão-1/metabolismo
12.
J Histochem Cytochem ; 68(5): 305-318, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-32391739

RESUMO

Our previous studies indicated that YIGSR-A99 peptides chemically conjugated to fibrin hydrogel (FH) and applied to wounded submandibular gland (SMG) in vivo, formed new organized salivary tissue, whereas wounded SMG treated with FH alone or in the absence of a scaffold showed disorganized collagen formation and poor tissue healing. While these studies indicated that damaged SMG grow and differentiate when treated with FH containing L1 peptide, they were performed only in female mice. However, there is a well-established sexual dimorphism present in mouse SMG (e.g., males develop well-differentiated granular convoluted tubules, but these structures are poorly developed in females) and little is known about how these sex differences influence wound healing events. Therefore, the goal of this study was to conduct comparative analyses of regeneration patterns in male and female mice using L1p-FH in a wounded SMG mouse model. Particularly, we focused on sex-dependent wound healing events such as macrophage polarization, vascularization, tissue organization, and collagen deposition, and how these events affect salivary gland functioning.


Assuntos
Regeneração , Caracteres Sexuais , Glândula Submandibular/fisiologia , Animais , Colágeno/metabolismo , Feminino , Fibrina/química , Fibrina/farmacologia , Hidrogéis/química , Macrófagos/citologia , Macrófagos/efeitos dos fármacos , Masculino , Camundongos , Neovascularização Fisiológica/efeitos dos fármacos , Regeneração/efeitos dos fármacos , Saliva/efeitos dos fármacos , Saliva/metabolismo , Glândula Submandibular/irrigação sanguínea , Glândula Submandibular/citologia , Glândula Submandibular/metabolismo , Cicatrização/efeitos dos fármacos
13.
Clin Exp Dent Res ; 6(2): 225-235, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-32250566

RESUMO

OBJECTIVES: Sjögren's syndrome (SS) is an autoimmune disease that causes chronic inflammation of the salivary glands leading to secretory dysfunction. Previous studies demonstrated that aspirin-triggered resolvin D1 (AT-RvD1) reduces inflammation and restores tissue integrity in salivary glands. Specifically, progression of SS-like features in NOD/ShiLtJ mice can be systemically halted using AT-RvD1 prior or after disease onset to downregulate proinflammatory cytokines, upregulate anti-inflammatory molecules, and restore saliva production. Therefore, the goal of this paper was to create a physiologically based pharmacokinetic (PBPK) model to offer a reasonable starting point for required total AT-RvD1 dosage to be administered in future mice and humans thereby eliminating the need for excessive use of animals and humans in preclinical and clinical trials, respectively. Likewise, PBPK modeling was employed to increase the range of testable scenarios for elucidating the mechanisms under consideration. MATERIALS AND METHODS: Pharmacokinetics following intravenous administration of a 0.1 mg/kg dose of AT-RvD1 in NOD/ShiLtJ were predicted in both plasma and saliva using PBPK modeling with PK-Sim® and MoBi® Version 7.4 software. RESULTS: The model provides high-value pathways for future validation via in vivo studies in NOD/ShiLtJ to corroborate the findings themselves while also establishing this method as a means to better target drug development and clinical study design. CONCLUSIONS: Clinical and basic research would benefit from knowledge of the potential offered by computer modeling. Specifically, short-term utility of these pharmacokinetic modeling findings involves improved targeting of in vivo studies as well as longer term prospects for drug development and/or better designs for clinical trials.


Assuntos
Ácidos Docosa-Hexaenoicos/farmacocinética , Modelos Biológicos , Síndrome de Sjogren/tratamento farmacológico , Administração Intravenosa , Animais , Aspirina/farmacologia , Ensaios Clínicos como Assunto/métodos , Simulação por Computador , Modelos Animais de Doenças , Ácidos Docosa-Hexaenoicos/administração & dosagem , Cálculos da Dosagem de Medicamento , Avaliação Pré-Clínica de Medicamentos/métodos , Humanos , Camundongos , Saliva/química , Glândulas Salivares/metabolismo , Síndrome de Sjogren/sangue , Distribuição Tecidual
14.
FASEB J ; 34(6): 7733-7744, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-32277856

RESUMO

Our previous results showed that the specialized pro-resolving mediator (SPM) Resolvin D1 (RvD1) promotes resolution of inflammation in salivary glands in non-obese diabetic (NOD)/ShiLtJ, a mouse model for Sjögren's syndrome (SS). Additionally, mice lacking the RvD1 receptor ALX/FPR2 show defective innate and adaptive immune responses in salivary glands. Particularly, ALX/FPR2 KO mice exhibit exacerbated inflammation in their salivary glands in response to systemic LPS treatment. Moreover, female ALX/FPR2 KO mice show increased autoantibody production and loss of salivary gland function with age. Together, these studies suggest that an underlying SPM dysregulation could be contributing to SS progression. Therefore, we investigated whether SPM production is altered in NOD/ShiLtJ using metabololipidomics and enzyme-linked immunosorbent assay (ELISA). Our results demonstrate that SPM levels were broadly elevated in plasma collected from NOD/ShiLtJ female mice after disease onset, whereas these drastic changes did not occur in male mice. Moreover, gene expression of enzymes involved in SPM biosynthesis were altered in submandibular glands (SMG) from NOD/ShiLtJ female mice after disease onset, with 5-LOX and 12/15-LOX being downregulated and upregulated, respectively. Despite this dysregulation, the abundances of the SPM products of these enzymes (ie, RvD1 and RvD2) were unaltered in freshly isolated SMG cells suggesting that other cell populations (eg, lymphocytes) may be responsible for the overabundance of SPMs that we observed. The elevation of SPMs noted here appeared to be sex mediated, meaning that it was observed only in one sex (females). Given that SS primarily affects females (roughly 90% of diagnosed cases), these results may provide some insights into the mechanisms underlying the observed sexual dimorphism.


Assuntos
Ácidos Docosa-Hexaenoicos/metabolismo , Síndrome de Sjogren/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Animais , Modelos Animais de Doenças , Regulação para Baixo/fisiologia , Feminino , Inflamação/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos NOD/metabolismo , Camundongos Knockout , Receptores de Formil Peptídeo/metabolismo , Glândulas Salivares/metabolismo , Fatores Sexuais , Glândula Submandibular/metabolismo , Regulação para Cima/fisiologia
15.
Acta Biomater ; 105: 121-130, 2020 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-31988042

RESUMO

Previously we developed a fibrin hydrogel (FH) decorated with laminin-111 peptides (L1p-FH) and supports three-dimensional (3D) gland microstructures containing polarized acinar cells. Here we expand on these results and show that co-culture of rat parotid Par-C10 cells with mesenchymal stem cells produces migrating branches of gland cells into the L1p-FH and we identify FGF-7 as the principal morphogenetic signal responsible for branching. On the other hand, another FGF family member and gland morphogen, FGF-10 increased proliferation but did not promote migration and therefore, limited the number and length of branched structures grown into the gel. By controlling the mode of growth factor presentation and delivery, we can control the length and cellularity of branches as well as formation of new nodes/clusters within the hydrogel. Such spatial delivery of two or more morphogens may facilitate engineering of anatomically complex tissues/mini organs such as salivary glands that can be used to address developmental questions or as platforms for drug discovery. STATEMENT OF SIGNIFICANCE: Hyposalivation leads to the development of a host of oral diseases. Current treatments only provide temporary relief. Tissue engineering may provide promising permanent solutions. Yet current models are limited to salivary spheroids with no branching networks. Branching structures are vital to an effective functioning gland as they increase the surface area/glandular volume ratio of the tissue, allowing a higher output from the small-sized gland. We describe a strategy that controls branch network formation in salivary glands that is a key in advancing the field of salivary gland tissue engineering.


Assuntos
Hidrogéis/farmacologia , Morfogênese , Glândulas Salivares/citologia , Esferoides Celulares/citologia , Engenharia Tecidual , Proliferação de Células/efeitos dos fármacos , Colágeno/farmacologia , Combinação de Medicamentos , Fibrina/farmacologia , Fatores de Crescimento de Fibroblastos/metabolismo , Folículo Piloso/citologia , Humanos , Laminina/farmacologia , Células-Tronco Mesenquimais/citologia , Células-Tronco Mesenquimais/efeitos dos fármacos , Morfogênese/efeitos dos fármacos , Proteoglicanas/farmacologia , Esferoides Celulares/efeitos dos fármacos
16.
NPJ Regen Med ; 4: 16, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31285850

RESUMO

Temperature-responsive polymer grafted tissue culture dishes release cells as confluent living sheets in response to small changes in temperature, with recovered cell sheets retaining cell-cell communications, functional extracellular matrices and tissue-like behaviors. These features promote tissue regeneration and improve transplantation efficacy in various tissues including cartilage, heart, kidney, liver, endometrium, cornea, middle ear, periodontium, and esophageal living sheet transplants. However, the functional effects of cell sheets for salivary gland regeneration to treat hyposalivation have not yet been studied. Thus, the present study aims to both establish the viability of thermoresponsive cell sheets for use in salivary glands and then explore the delivery option (i.e., single vs. multiple layers) that would result in the most complete tissue growth in terms of cell differentiation and recovered tissue integrity. Results indicate that single cell sheets form polarized structures that maintain cell-cell junctions and secretory granules in vitro while layering of two-single cell sheets forms a glandular-like pattern in vitro. Moreover, double layer cell sheets enhance tissue formation, cell differentiation and saliva secretion in vivo. In contrast, single cell sheets demonstrated only modest gains relative to the robust growth seen with the double layer variety. Together, these data verify the utility of thermoresponsive cell sheets for use in salivary glands and indicates the double layer form to provide the best option in terms of cell differentiation and recovered tissue integrity, thereby offering a potential new therapeutic strategy for treating hyposalivation.

17.
Acta Biomater ; 91: 186-194, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-31028910

RESUMO

Hyposalivation is associated with radiation therapy, Sjögren's syndrome and/or aging, and is a significant clinical problem that decreases oral health and overall health in many patients and currently lacks effective treatment. Hence, methods to regenerate salivary glands and restore saliva secretion are urgently needed. To this end, this study describes the modification of fibrin hydrogels with a combination of laminin-1 peptides (YIGSR and A99) and human growth factors (vascular endothelial growth factor and fibroblast growth factor 9) to enhance regeneration in a salivary gland injury mouse model. Our results indicate that these fortified hydrogels enhanced angiogenesis and neurogenesis while promoting formation of acinar structures, thereby leading to enhanced saliva secretion. Such functional recovery indicates salivary gland regeneration and suggests that our technology may be useful in promoting gland regeneration and reversing hyposalivation in a clinical setting. STATEMENT OF SIGNIFICANCE: We engineered Fibrin Hydrogels (FH) to contain multiple regenerative cues including laminin-1 peptides (L1p) and growth factors (GFs). L1p and GF modified FH were used to induce salivary gland regeneration in a wounded mouse model. Treatment with L1p and GF modified FH promoted salivary epithelial tissue regeneration, vascularization, neurogenesis and healing as compared to L1p-FH or FH alone. Results indicate that L1p and GF modified FH can be used for future therapeutic applications.


Assuntos
Fator 9 de Crescimento de Fibroblastos , Hidrogéis , Laminina , Peptídeos , Regeneração/efeitos dos fármacos , Glândulas Salivares , Fator A de Crescimento do Endotélio Vascular , Animais , Feminino , Fator 9 de Crescimento de Fibroblastos/química , Fator 9 de Crescimento de Fibroblastos/farmacologia , Humanos , Hidrogéis/química , Hidrogéis/farmacologia , Laminina/química , Laminina/farmacologia , Camundongos , Neovascularização Fisiológica/efeitos dos fármacos , Neurogênese/efeitos dos fármacos , Peptídeos/química , Peptídeos/farmacologia , Glândulas Salivares/lesões , Glândulas Salivares/fisiologia , Fator A de Crescimento do Endotélio Vascular/química , Fator A de Crescimento do Endotélio Vascular/farmacologia
18.
Rheumatology (Oxford) ; 58(7): 1285-1292, 2019 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-30877775

RESUMO

OBJECTIVES: SS is characterized by chronic inflammation of the salivary glands leading to loss of secretory function, thereby suggesting specialized pro-resolving mediators targeting inflammation to be a viable option for treating SS. Previous studies demonstrated that aspirin-triggered resolvin D1 (AT-RvD1) prevents chronic inflammation and enhances saliva secretion in a SS-like mouse model when applied before disease onset. However, this therapy cannot be used in SS patients given that diagnosis occurs post-disease onset and no reliable screening methods exist. Therefore, we examined whether treatment with AT-RvD1 reduces SS-like features in a mouse model post-disease onset. METHODS: Tail vein injections were performed in a SS-like mouse model both with and without AT-RvD1 post-disease onset for 8 weeks, with salivary gland function and inflammatory status subsequently determined. RESULTS: Treatment of a SS-like mouse model with AT-RvD1 post-disease onset restores saliva secretion in both females and males. Moreover, although AT-RvD1 treatment does not reduce the overall submandibular gland lymphocytic infiltration, it does reduce the number of T helper 17 cells within the infiltrates in both sexes. Finally, AT-RvD1 reduces SS-associated pro-inflammatory cytokine gene and protein expression levels in submandibular glands from female but not male mice. CONCLUSION: AT-RvD1 treatment administered post-disease onset reduces T helper 17 cells and successfully restores salivary gland function in a SS mouse model with variable effects noted by sex, thus warranting further examination of both the causes for the sex differences and the mechanisms responsible for the observed treatment effect.


Assuntos
Anti-Inflamatórios não Esteroides/uso terapêutico , Ácidos Docosa-Hexaenoicos/uso terapêutico , Saliva/fisiologia , Síndrome de Sjogren/tratamento farmacológico , Animais , Aspirina/farmacologia , Citocinas/biossíntese , Modelos Animais de Doenças , Avaliação Pré-Clínica de Medicamentos/métodos , Feminino , Mediadores da Inflamação/metabolismo , Contagem de Linfócitos , Masculino , Camundongos Endogâmicos NOD , Salivação/efeitos dos fármacos , Síndrome de Sjogren/imunologia , Síndrome de Sjogren/metabolismo , Células Th17/efeitos dos fármacos
19.
Sci Rep ; 8(1): 15220, 2018 Oct 16.
Artigo em Inglês | MEDLINE | ID: mdl-30327486

RESUMO

A correction has been published and is appended to both the HTML and PDF versions of this paper. The error has not been fixed in the paper.

20.
Am J Pathol ; 188(7): 1555-1562, 2018 07.
Artigo em Inglês | MEDLINE | ID: mdl-29684359

RESUMO

Lipoxin receptor (ALX)/N-formyl peptide receptor (FPR)-2 is a G-protein-coupled receptor that has multiple binding partners, including the endogenous lipid mediators resolvin D1, lipoxin A4, and the Ca2+-dependent phospholipid-binding protein annexin A1. Previous studies have demonstrated that resolvin D1 activates ALX/Fpr2 to resolve salivary gland inflammation in the NOD/ShiLtJ mouse model of Sjögren syndrome. Moreover, mice lacking the ALX/Fpr2 display an exacerbated salivary gland inflammation in response to lipopolysaccharide. Additionally, activation of ALX/Fpr2 has been shown to be important for regulating antibody production in B cells. These previous studies indicate that ALX/Fpr2 promotes resolution of salivary gland inflammation while modulating adaptive immunity, suggesting the need for investigation of the role of ALX/Fpr2 in regulating antibody production and secretory function in mouse salivary glands. Our results indicate that aging female knockout mice lacking ALX/Fpr2 display a significant reduction in saliva flow rates and weight loss, an increased expression of autoimmune-associated genes, an up-regulation of autoantibody production, and increased CD20-positive B-cell population. Although not all effects were noted among the male knockout mice, the results nonetheless indicate that ALX/Fpr2 is clearly involved in the adaptive immunity and secretory function in salivary glands, with further investigation warranted to determine the cause(s) of these between-sex differences.


Assuntos
Imunidade Adaptativa/imunologia , Proteínas de Homeodomínio/fisiologia , Inflamação/imunologia , Receptores de Formil Peptídeo/fisiologia , Glândulas Salivares/imunologia , Glândula Submandibular/imunologia , Animais , Feminino , Inflamação/metabolismo , Inflamação/patologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Endogâmicos NOD , Camundongos Knockout , Glândulas Salivares/metabolismo , Glândulas Salivares/patologia , Transdução de Sinais , Glândula Submandibular/metabolismo , Glândula Submandibular/patologia , Redução de Peso
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA